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Introduction

Research Goal: Apply Optimal Control (OC) theory to Deep Brain Stimulation (DBS).
• DBS is a neurosurgical procedure that involves delivering electrical pulses to the
brain via surgically implanted electrodes.

• Conventional DBS approaches (open-loop) rely on clinicians manually tuning the
pulse generator through trial-and-error.

Fig. 1: Schematic of current state-of-the-art: open-loop DBS

Control Formulation

We consider the following dynamics

dz

dt
(t) = f (t, z(t)) + e1u(t), t ∈ [0, T ], e1 = [1, 0, 0, 0]⊤,

where

• z(t) ∈ R4 denotes the state of the system at time t

• u(t) is the control (i.e., external current provided as input) applied at time t.

• f describes time evolution of state variable z according to the Hodgkin-Huxley neu-
ronal model [1]:

f (t, z(t)) =


−
(
INa
(
t, z0(t)

)
+ IK

(
t, z0(t)

)
+ IL

(
t, z0(t)

))
αm(z0(t))(1− z1(t))− βm(z0(t))z1(t)
αn(z0(t))(1− z2(t))− βn(z0(t))z2(t)
αh(z0(t))(1− z3(t))− βh(z0(t))z3(t)

 .

where INa, IK, and IL are sodium, potassium, and leakage ion channel currents while
αx and βx, for x ∈ {m,n, h}, are voltage-dependent rate constants.

Challenges & Promising Avenues

Large-scale Neuronal Dynamics

• Curse of Dimensionality arises as models increase in complexity and in solving HJB
Difficulty: Makes direct solution intractable
Remedy: Apply neural networks: scale well to high-dimensions. Or approximate
large-scale dynamics with mean-field models.

Beyond Optimal Control

• Optimal Control approaches require full knowledge of system dynamics.
Difficulty: Dynamics can be unknown/not fully accurate.
Remedy: Consider combining with dynamics-agnostic approaches like Reinforce-
ment Learning.

Optimal Control Problem

Goal: Find optimal control u∗t that minimizes the value function

Φ(t, z(t)) = inf
u

(∫ T

t
L(s, z(s), u(s))ds +G(z(T ))

)
,

with running cost L(t, z, u) = 1
2∥u(t)∥

2 and terminal cost G(z(T )) = 1
2∥z(T )− y∥2

Fig. 2: Schematic of closed-loop DBS approach

Closed-loop DBS via OC

• Combine Pontryagin’s Maximum Principle (PMP) and Hamilton Jacobi Bellman (HJB) ap-
proaches to yield a semi-global solution method as per [2, 3]

– Φ satisfies the HJB equation{
−∂tΦ(t, z(t)) + supu∈U H

(
t, z,∇zΦ(t, z(t)), u(t)

)
= 0,

Φ(T, z(T )) = G(z(T )),

where Hamiltonian H(t, z, p, u) = −1
2∥u(t)∥

2 − p⊤ · [f (z(t), t) + e1u(t)]

– Optimality conditions ∂tp(s) = ∇zH
(
s, z∗(s), p(s), u∗(s)

)
,

∂sz
∗(s) = −∇pH

(
s, z∗(s), p(s), u∗(s)

)
z∗(t) = z, p(T ) = ∇zG(z∗(T ))

This system is solved by p(s) = ∇zΦ(s, z(s)), t < s ≤ T. Optimal control recovered in
feedback form as u∗(s) ∈ argmaxuH

(
s, z∗(s),Φ(s, z∗(s)), u(s)

)
• Approximate Φ using a neural network parameterized by θ, denoted by Φθ

Φθ(x) = w⊤N(x; θ) +
1

2
x⊤(A⊤A)x + b⊤x + c

for space-time inputs x = (t, z), weights θ = (w,A, b, c), and neural network N(x; θ)

• Solve the learning problem i.e. find θ and weights of neural network by solving

min
θ

Ex∼ρ {ℓ(T ) + g(z(T )) + β1cHJ(T ) + β2|Φθ(T, z(T ))− g(z(T ))|}

subject to

∂s

 z(s)
ℓ(s)

cHJ(s)

 =

 −∇pH
(
s, z(s),∇zΦ

(
s, z(s)

)
, u∗(s)

)
L(s, z, u∗(s))∣∣− ∂tΦ

(
s, z(s)

)
+H

(
s, z,∇zΦθ

(
s, z(s)

)
, u∗(s)

)∣∣
 ,

initialized with z(0) = x, ℓ(0) = cHJ(0) = 0 and for hyperparameters β1 and β2.

Preliminary Results

Fig. 3: Ion channel currents, membrane potential, and controls from local solution method with L-BGFS-B

Fig. 4: Ion channel currents, membrane potential, and controls from global solution method from [2, 3]

Conclusion

• Formulated the problem of finding an optimal neurostimulation strategy as a control
problem.

• Derived an optimal value function which satisfies the HJB equation and from which
the optimal (stimulation) control can be recovered in feedback form.

• Established a concrete link between the learning problem and optimal control, spec-
ified by the PMP and HJB equation.
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