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Introduction

Research Goal: Apply Optimal Control (OC) theory to Deep Brain Stimulation (DBS).
e DBS is a neurosurgical procedure that involves delivering electrical pulses to the
brain via surgically implanted electrodes.

e Conventional DBS approaches (open-loop) rely on clinicians manually tuning the
pulse generator through trial-and-error.
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Fig. 1. Schematic of current state-of-the-art: open-loop DBS

Control Formulation

We consider the following dynamics

dz

() = f(t,2(6) + equ(t), t€[0,T), e =[1,0,0,0]"

where
2(t) € R* denotes the state of the system at time ¢

e u(t) is the control (i.e., external current provided as input) applied at time .

e f describes time evolution of state variable z according to the Hodgkin-Huxley neu-
ronal model [1]:

\ aplz0(t)(1— 23(t) — Bulzo0(t)zs(t) )

where Iy, I, and I, are sodium, potassium, and leakage ion channel currents while
oy and By, for x € {m,n, h}, are voltage-dependent rate constants.

Challenges & Promising Avenues

Large-scale Neuronal Dynamics

e Curse of Dimensionality arises as models increase in complexity and in solving HJB
Difficulty: Makes direct solution intractable
Remedy: Apply neural networks: scale well to high-dimensions. Or approximate
large-scale dynamics with mean-field models.

Beyond Optimal Control

e Optimal Control approaches require full knowledge of system dynamics.
Difficulty: Dynamics can be unknown/not fully accurate.
Remedy: Consider combining with dynamics-agnostic approaches like Reinforce-
ment Learning.
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Optimal Control Problem

Goal: Find optimal control u; that minimizes the value function

u

T
O(t, 2(t)) = inf (/t L(s, 2(s), u(s))ds + G(2(T ))) ,

with running cost L(t, z,u) = %Hu(t)HQ and terminal cost G(2(T)) = %HZ(T) —y|)?
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Fig. 2: Schematic of closed-loop DBS approach

Closed-loop DBS via OC

e Combine Pontryagin’s Maximum Principle (PMP) and Hamilton Jacobi Bellman (HJB) ap-
proaches to yield a semi-global solution method as per [2, 3]

— ® satisfies the HJB equation

{ —0rd(t, z(1)) +supu€U7-[(t 2, V. ®(t, 2(1)), (t)) =0,
(T, 2(T)) = G(=(T)),

where Hamiltonian H(t, z, p, u) = —%Hu(t)H2 —p! - [f(2(t), 1) + equ(t)]
— Optimality conditions

Op(s) = VH(s, 2*(s), p(s), u* 5))
052*(s) = =V pH (s, 2%(s), p(s), u*(s))
2¥(t) =z, p(T) = V.G(z*(T))

This system is solved by p(s) = V., ®(s, z(s)), t < s <T. Optimal control recovered in
feedback form as u*(s) € arg max,, 7—[(3 2*(s), (s, 2*(s)), u(s))

e Approximate ® using a neural network parameterized by 6, denoted by ®y
1
Dy(z) =w' N(z:0) + 5 2 (AT Az + b+

for space-time inputs x = (¢, z), weights 6 = (w, A, b, ¢), and neural network N (z; )

e Solve the learning problem i.c. find 6 and weights of neural network by solving

minEyp {6(T) + g(2(T)) + Brepy(T) + G| Po(T', 2(T')) — g(2(T))|}

0
subject to 2(s) —VpH (s, 2(s), VoD (s, 2(s)), u*(s))
Os | LUs) | = L(s,z,u™(s)) | .
cy(s) | — (s, 2(s)) + H(s, 2, V. Dy(s, 2(s )) (S))‘
initialized with 2(0) = z, £(0) = ¢p3(0) = 0 and for hyperparameters 51 and [s.
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Fig. 4: Ton channel currents, membrane potential, and controls from global solution method from [2, 3]

Conclusion

e Formulated the problem of finding an optimal neurostimulation strategy as a control
problem.

e Derived an optimal value function which satisfies the HJB equation and from which
the optimal (stimulation) control can be recovered in feedback form.

e Listablished a concrete link between the learning problem and optimal control, spec-
ified by the PMP and HJB equation.
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